Filters
Question type

Study Flashcards

Find all solutions in the interval [0, 2π] - sin2x+sinx=0\sin ^ { 2 } x + \sin x = 0


A) x=0,π,3π2x = 0 , \pi , \frac { 3 \pi } { 2 }
B) x=0,π,π3,5π3x = 0 , \pi , \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }
C) x=0,π,4π3,5π3x = 0 , \pi , \frac { 4 \pi } { 3 } , \frac { 5 \pi } { 3 }
D) x=0,π,π3,2π3x = 0 , \pi , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 }

E) A) and D)
F) None of the above

Correct Answer

verifed

verified

Given the SSS parts of a triangle, is it better to use the law of sines or the law of cosines as the first step in solving the triangle? Explain.

Correct Answer

verifed

verified

Use the law of cosin...

View Answer

Solve the problem. -A building has a ramp to its front doors to accommodate the handicapped. If the distance from the building to the end of the ramp is 13 feet and the height from the ground to the front doors is 4 feet, how long is the ramp? (Round to the nearest tenth.)


A) 13.6 ft
B) 12.4 ft
C) 4.1 ft
D) 5.7 ft

E) A) and D)
F) None of the above

Correct Answer

verifed

verified

Prove the identity. - cscx1cscx+1=cot2xcsc2x+2cscx+1\frac { \csc x - 1 } { \csc x + 1 } = \frac { \cot ^ { 2 } x } { \csc ^ { 2 } x + 2 \csc x + 1 }

Correct Answer

verifed

verified

Simplify the expression. - cotxsec2x+cotxcsc2x\frac { \cot x } { \sec ^ { 2 } x } + \frac { \cot x } { \csc ^ { 2 } x }


A) cotx\cot x
B) tanx\tan x
C) sinx\sin x
D) cot2x\cot ^ { 2 } x

E) A) and C)
F) C) and D)

Correct Answer

verifed

verified

Find all solutions to the equation. - sinx=32\sin x = \frac { \sqrt { 3 } } { 2 } \quad (Express your answer in radians, in exact form.)


A) {π3+2nπ,5π3+2nπn=0,±1,±2,}\left\{ \frac { \pi } { 3 } + 2 \mathrm { n } \pi , \frac { 5 \pi } { 3 } + 2 \mathrm { n } \pi \mid \mathrm { n } = 0 , \pm 1 , \pm 2 , \ldots \right\}
B) {π3+nπn=0,±1,±2,}\left\{ \frac { \pi } { 3 } + n \pi \quad \mathrm { n } = 0 , \pm 1 , \pm 2 , \ldots \right\}
C) {π6+2nπ,5π6+2nπn=0,±1,±2,}\left\{ \frac { \pi } { 6 } + 2 \mathrm { n } \pi , \frac { 5 \pi } { 6 } + 2 \mathrm { n } \pi \mid \mathrm { n } = 0 , \pm 1 , \pm 2 , \ldots \right\}
D) {π3+2nπ,2π3+2nπn=0,±1,±2,}\left\{ \frac { \pi } { 3 } + 2 \mathrm { n } \pi , \frac { 2 \pi } { 3 } + 2 \mathrm { n } \pi \mid \mathrm { n } = 0 , \pm 1 , \pm 2 , \ldots \right\}

E) None of the above
F) C) and D)

Correct Answer

verifed

verified

Find all solutions to the equation. - cosx=sinx\cos x = \sin x


A) {π4+2nπ,7π4+2nπn=0,±1,±2,}\left\{ \frac { \pi } { 4 } + 2 \mathrm { n } \pi , \frac { 7 \pi } { 4 } + 2 \mathrm { n } \pi \mid \mathrm { n } = 0 , \pm 1 , \pm 2 , \ldots \right\}
B) {π4+nπn=0,±1,±2,}\left\{ \frac { \pi } { 4 } + n \pi \mid \mathrm { n } = 0 , \pm 1 , \pm 2 , \ldots \right\}
C) {π2+nπn=0,±1,±2,.}\left\{ \frac { \pi } { 2 } + \mathrm { n } \pi \mid \mathrm { n } = 0 , \pm 1 , \pm 2 , \ldots . \right\}
D) {3π4+2nπ,5π4+2nπn=0,±1,±2,.}\left\{ \frac { 3 \pi } { 4 } + 2 \mathrm { n } \pi , \frac { 5 \pi } { 4 } + 2 \mathrm { n } \pi \mid \mathrm { n } = 0 , \pm 1 , \pm 2 , \ldots . \right\}

E) A) and C)
F) A) and B)

Correct Answer

verifed

verified

Find all solutions in the interval [0, 2π) . - cot(x2) =1cosx1+cosx\cot \left( \frac { x } { 2 } \right) = \frac { 1 - \cos x } { 1 + \cos x }


A) π4,5π4\frac { \pi } { 4 } , \frac { 5 \pi } { 4 }
B) 0
C) π2\frac { \pi } { 2 }
D) 3π4,7π4\frac { 3 \pi } { 4 } , \frac { 7 \pi } { 4 }

E) None of the above
F) B) and D)

Correct Answer

verifed

verified

Two triangles can be formed using the given measurements. Solve both triangles. - B=35,b=23,c=24\mathrm { B } = 35 ^ { \circ } , \mathrm { b } = 23 , \mathrm { c } = 24


A) A=91.8,C=53.2,a=13.2;A=88.2,C=126.8,a=13.2\mathrm { A } = 91.8 ^ { \circ } , \mathrm { C } = 53.2 ^ { \circ } , \mathrm { a } = 13.2 ; \mathrm { A } = 88.2 ^ { \circ } , \mathrm { C } = 126.8 ^ { \circ } , \mathrm { a } = 13.2
B) A=91.8,C=53.2,a=40.1;A=88.2,C=126.8,a=40.1\mathrm { A } = 91.8 ^ { \circ } , \mathrm { C } = 53.2 ^ { \circ } , \mathrm { a } = 40.1 ; \mathrm { A } = 88.2 ^ { \circ } , \mathrm { C } = 126.8 ^ { \circ } , \mathrm { a } = 40.1
C) A=108.2,C=36.8,a=13.9;A=1.8,C=143.2,a=13.9\mathrm { A } = 108.2 ^ { \circ } , \mathrm { C } = 36.8 ^ { \circ } , \mathrm { a } = 13.9 ; \mathrm { A } = 1.8 ^ { \circ } , \mathrm { C } = 143.2 ^ { \circ } , \mathrm { a } = 13.9
D) A=108.2,C=36.8,a=38.1;A=1.8,C=143.2,a=1.3\mathrm { A } = 108.2 ^ { \circ } , \mathrm { C } = 36.8 ^ { \circ } , \mathrm { a } = 38.1 ; \mathrm { A } = 1.8 ^ { \circ } , \mathrm { C } = 143.2 ^ { \circ } , \mathrm { a } = 1.3

E) A) and B)
F) B) and D)

Correct Answer

verifed

verified

Find the area. Round your answer to the nearest hundredth if necessary. -Find the area of the triangle with the following measurements: A=50,b=25ft,c=15ft\mathrm { A } = 50 ^ { \circ } , \mathrm { b } = 25 \mathrm { ft } , \mathrm { c } = 15 \mathrm { ft }


A) 120.52ft2120.52 \mathrm { ft } ^ { 2 }
B) 375ft2375 \mathrm { ft } ^ { 2 }
C) 287.27ft2287.27 \mathrm { ft } ^ { 2 }
D) 143.63ft2143.63 \mathrm { ft } ^ { 2 }

E) A) and B)
F) B) and C)

Correct Answer

verifed

verified

Write each expression in factored form as an algebraic expression of a single trigonometric function. - csc2x1\csc ^ { 2 } x - 1


A) (cscx+1) (cscx1) ( \csc x + 1 ) ( \csc x - 1 )
B) cotx\cot x
C) (cotx+1) (cotx1) ( \cot x + 1 ) ( \cot x - 1 )
D) cscx1\csc x - 1

E) B) and C)
F) C) and D)

Correct Answer

verifed

verified

Find an exact value. - sin105\sin 105 ^ { \circ }


A) 624\frac { - \sqrt { 6 } - \sqrt { 2 } } { 4 }
B) 624\frac { \sqrt { 6 } - \sqrt { 2 } } { 4 }
C) 6+24\frac { - \sqrt { 6 } + \sqrt { 2 } } { 4 }
D) 6+24\frac { \sqrt { 6 } + \sqrt { 2 } } { 4 }

E) A) and C)
F) B) and C)

Correct Answer

verifed

verified

State whether the given measurements determine zero, one, or two triangles. - B=87,b=27,c=28B = 87 ^ { \circ } , b = 27 , c = 28


A) Zero
B) Two
C) One

D) A) and B)
E) A) and C)

Correct Answer

verifed

verified

Find all solutions to the equation in the interval [0, 2) . - sin2x+cos3x=0\sin 2 x + \cos 3 x = 0


A) 0.3π,0.5π,0.7π,1.9π0.3 \pi , 0.5 \pi , 0.7 \pi , 1.9 \pi
B) 0.3π,0.5π,0.7π,1.1π,1.5π,1.9π0.3 \pi , 0.5 \pi , 0.7 \pi , 1.1 \pi , 1.5 \pi , 1.9 \pi
C) 0.3π,0.7π,1.1π,1.9π0.3 \pi , 0.7 \pi , 1.1 \pi , 1.9 \pi
D) 0.5π,1.5π0.5 \pi , 1.5 \pi

E) A) and B)
F) A) and C)

Correct Answer

verifed

verified

Find an exact value. - cos165\cos 165 ^ { \circ }


A) 624\frac { - \sqrt { 6 } - \sqrt { 2 } } { 4 }
B) 2+64\frac { \sqrt { 2 } + \sqrt { 6 } } { 4 }
C) 624\frac { \sqrt { 6 } - \sqrt { 2 } } { 4 }
D) 264\frac { \sqrt { 2 } - \sqrt { 6 } } { 4 }

E) B) and D)
F) C) and D)

Correct Answer

verifed

verified

Prove the identity. - cos4x=12sin22x\cos 4 x = 1 - 2 \sin ^ { 2 } 2 x

Correct Answer

verifed

verified

Prove the identity. - 4csc2x=2csc2xtanx4 \csc 2 x = 2 \csc ^ { 2 } x \tan x

Correct Answer

verifed

verified

Provide an appropriate response. -  Show that csc(A+B)=cscAcscBcotB+cotA\text { Show that } \csc ( A + B ) = \frac { \csc A \csc B } { \cot B + \cot A } \text {. }

Correct Answer

Answered by ExamLex AI

Answered by ExamLex AI

To show that \csc(A + B) = \frac{\csc A ...

View Answer

The given measurements may or may not determine a triangle. If not, then state that no triangle is formed. If a triangle is formed, then use the Law of Sines to solve the triangle, if it is possible, or state that the Law of Sines cannot be used. - The given measurements may or may not determine a triangle. If not, then state that no triangle is formed. If a triangle is formed, then use the Law of Sines to solve the triangle, if it is possible, or state that the Law of Sines cannot be used. -  A)   \mathrm { B } = 57 ^ { \circ } , \mathrm { a } \approx 5.4  B)   \mathrm { B } = 57 ^ { \circ } , \mathrm { a } \approx 53.1  C)   B = 33 ^ { \circ } , a \approx 53.1  D)  No triangle is formed.


A) B=57,a5.4\mathrm { B } = 57 ^ { \circ } , \mathrm { a } \approx 5.4
B) B=57,a53.1\mathrm { B } = 57 ^ { \circ } , \mathrm { a } \approx 53.1
C) B=33,a53.1B = 33 ^ { \circ } , a \approx 53.1
D) No triangle is formed.

E) A) and C)
F) A) and B)

Correct Answer

verifed

verified

Write the expression as the sine, cosine, or tangent of an angle. - cosπ7cosπ11+sinπ7sinπ11\cos \frac { \pi } { 7 } \cos \frac { \pi } { 11 } + \sin \frac { \pi } { 7 } \sin \frac { \pi } { 11 }


A) sin18π77\sin \frac { 18 \pi } { 77 }
B) cos4π77\cos \frac { 4 \pi } { 77 }
C) sin4π77\sin \frac { 4 \pi } { 77 }
D) cos18π77\cos \frac { 18 \pi } { 77 }

E) None of the above
F) All of the above

Correct Answer

verifed

verified

Showing 241 - 260 of 313

Related Exams

Show Answer