Filters
Question type

Study Flashcards

Solve the problem. -A snail travels at 0.40.4 feet/min for 5 minutes. How far does it travel?


A) 0.4ft0.4 \mathrm { ft }
B) 5ft5 \mathrm { ft }
C) 2ft2 \mathrm { ft }
D) 0.45ft\frac { 0.4 } { 5 } \mathrm { ft }

E) All of the above
F) None of the above

Correct Answer

verifed

verified

Use NINT on a calculator to find the numerical integral of the function over the specified interval. - f(x) =x36+x2;[0,10]f ( x ) = \frac { x } { 36 + x ^ { 2 } } ; [ 0,10 ] Round to three decimal places.


A) 1.8991.899
B) 0.3320.332
C) 0.6650.665
D) 0.665- 0.665

E) C) and D)
F) B) and D)

Correct Answer

verifed

verified

Use graphs and tables to find the limit and identify any vertical asymptotes. - limx9xx9\lim _ { x \rightarrow 9 ^ { - } } \frac { x } { x - 9 }


A) 9 ; no vertical asymptotes
B) x;x=9x ; x = 9
C) ;x=9- \infty ; x = - 9
D) ;x=9- \infty ; x = 9

E) A) and B)
F) B) and D)

Correct Answer

verifed

verified

Compute the average of the RRAM and LRAM approximations to estimate the area between the graph of the function and the x-axis over the given interval using the indicated number of subintervals. (The function is non-negative on the given interval) . - f(x) =16+6xx2;[0,4];4f ( x ) = 16 + 6 x - x ^ { 2 } ; [ 0,4 ] ; 4 subintervals


A) 2254\frac { 225 } { 4 }
B) 115
C) 230
D) 2252\frac { 225 } { 2 }

E) None of the above
F) All of the above

Correct Answer

verifed

verified

Find the derivative of the function at the specified point. - f(x) =5x+9f ( x ) = 5 x + 9 at x=2x = 2


A) 0
B) 5
C) 10
D) 9

E) B) and C)
F) B) and D)

Correct Answer

verifed

verified

Solve the problem. -The position of an object at time tt is given by s(t) s ( t ) . Find the instantaneous velocity at the indicated value of tt . s(t) =75s ( t ) = - 7 - 5 t at t=4t = 4


A) 5
B) 27- 27
C) 5- 5
D) 7- 7

E) B) and C)
F) None of the above

Correct Answer

verifed

verified

Find the limit. -Let limx7f(x) =5\lim _ { x \rightarrow 7 } f ( x ) = - 5 and limx7g(x) =10\lim _ { x \rightarrow 7 } g ( x ) = - 10 . Find limx7f(x) g(x) \lim _ { x \rightarrow 7 } \frac { f ( x ) } { g ( x ) } .


A) 5
B) 2
C) 12\frac { 1 } { 2 }
D) 7- 7

E) B) and D)
F) B) and C)

Correct Answer

verifed

verified

Find the indicated limit. - limxxcos1x\lim _ { x \rightarrow } x \cos \frac { 1 } { x }


A) \propto
B) 0
C) - \infty
D) 1

E) A) and B)
F) B) and C)

Correct Answer

verifed

verified

Find the definite integral by computing an area. - 057xdx\int _ { 0 } ^ { 5 } 7 x d x


A) 175
B) 35
C) 1752\frac { 175 } { 2 }
D) 252\frac { 25 } { 2 }

E) B) and C)
F) A) and D)

Correct Answer

verifed

verified

Solve the problem. -A toy rocket is launched straight up from level ground. Its velocity function is f(t) =18932tft/sec\mathrm { f } ( \mathrm { t } ) = 189 - 32 \mathrm { t } \mathrm { ft } / \mathrm { sec } , where t\mathrm { t } is the number of seconds after launch. At what time does the rocket reach its maximum height?


A) 6.23sec6.23 \mathrm { sec }
B) 5.72sec5.72 \mathrm { sec }
C) 5.91sec5.91 \mathrm { sec }
D) 11.81sec11.81 \mathrm { sec }

E) A) and B)
F) A) and C)

Correct Answer

verifed

verified

Match the function with the correct table values. - f(x) =x41x1f ( x ) = \frac { x ^ { 4 } - 1 } { x - 1 }  Match the function with the correct table values. - f ( x )  = \frac { x ^ { 4 } - 1 } { x - 1 }     A)   4.595 ; 5.046 ; 5.095 ; 5.105 ; 5.154 ; 5.677  B)   1.032 ; 1.182 ; 1.198 ; 1.201 ; 1.218 ; 1.392  C)   3.439 ; 3.940 ; 3.994 ; 4.006 ; 4.060 ; 4.641


A) 4.595;5.046;5.095;5.105;5.154;5.6774.595 ; 5.046 ; 5.095 ; 5.105 ; 5.154 ; 5.677
B) 1.032;1.182;1.198;1.201;1.218;1.3921.032 ; 1.182 ; 1.198 ; 1.201 ; 1.218 ; 1.392
C) 3.439;3.940;3.994;4.006;4.060;4.6413.439 ; 3.940 ; 3.994 ; 4.006 ; 4.060 ; 4.641

D) A) and C)
E) A) and B)

Correct Answer

verifed

verified

Find the derivative of the function at the specified point. - f(x) =8x+2f ( x ) = \frac { 8 } { x + 2 } at x=0x = 0


A) 2- 2
B) 32- 32
C) 8
D) 2

E) A) and D)
F) All of the above

Correct Answer

verifed

verified

Solve the problem. -Estimate the "RRAM" area under the graph of the function above the xx -axis and under the graph of the function from x=0x = 0 to x=5x = 5 . Use 5 subintervals.  Solve the problem. -Estimate the  RRAM  area under the graph of the function above the  x -axis and under the graph of the function from  x = 0  to  x = 5 . Use 5 subintervals.    A)  15.5 B)  18.75 C)  17.5 D)  14.5


A) 15.5
B) 18.75
C) 17.5
D) 14.5

E) B) and D)
F) None of the above

Correct Answer

verifed

verified

Find the derivative of the function at the specified point. - g(x) =x3+5xg ( x ) = x ^ { 3 } + 5 x at x=1x = 1


A) 8
B) 3
C) 7
D) 6

E) B) and C)
F) A) and B)

Correct Answer

verifed

verified

Match the function with the correct table values. - f(x) =x2+5x+6x2+7x+12f ( x ) = \frac { x ^ { 2 } + 5 x + 6 } { x ^ { 2 } + 7 x + 12 }  Match the function with the correct table values. - f ( x )  = \frac { x ^ { 2 } + 5 x + 6 } { x ^ { 2 } + 7 x + 12 }     A)   0.7101 ; 0.7139 ; 0.7142 ; 0.7143 ; 0.7147 ; 0.7183  B)   - 1.1222 ; - 0.9202 ; - 0.9020 ; - 0.8980 ; - 0.8802 ; - 0.7182  C)   - 1.2222 ; - 1.0202 ; - 1.0020 ; - 0.9980 ; - 0.9802 ; - 0.8182  D)   - 1.3222 ; - 1.1202 ; - 1.1020 ; - 1.0980 ; - 1.0802 ; - 0.9182


A) 0.7101;0.7139;0.7142;0.7143;0.7147;0.71830.7101 ; 0.7139 ; 0.7142 ; 0.7143 ; 0.7147 ; 0.7183
B) 1.1222;0.9202;0.9020;0.8980;0.8802;0.7182- 1.1222 ; - 0.9202 ; - 0.9020 ; - 0.8980 ; - 0.8802 ; - 0.7182
C) 1.2222;1.0202;1.0020;0.9980;0.9802;0.8182- 1.2222 ; - 1.0202 ; - 1.0020 ; - 0.9980 ; - 0.9802 ; - 0.8182
D) 1.3222;1.1202;1.1020;1.0980;1.0802;0.9182- 1.3222 ; - 1.1202 ; - 1.1020 ; - 1.0980 ; - 1.0802 ; - 0.9182

E) B) and C)
F) All of the above

Correct Answer

verifed

verified

Find the limit of the function by using direct substitution. - limxπ/2(4excosx) \lim _ { x \rightarrow \pi / 2 } \left( 4 e ^ { x } \cos x \right)


A) 0
B) 1
C) π2\frac { \pi } { 2 }
D) 4eπ/24 \mathrm { e } ^ { \pi / 2 }

E) C) and D)
F) A) and D)

Correct Answer

verifed

verified

Find the derivative of the function using the definition of derivative. - f(x) =2xf ( x ) = - \frac { 2 } { x }


A) f(x) =2x2f ^ { \prime } ( x ) = - 2 x ^ { 2 }
B) f(x) =2x2f ^ { \prime } ( x ) = - \frac { 2 } { x ^ { 2 } }
C) f(x) =2f ^ { \prime } ( x ) = - 2
D) f(x) =2x2f ^ { \prime } ( x ) = \frac { 2 } { x ^ { 2 } }

E) A) and B)
F) B) and C)

Correct Answer

verifed

verified

Find the equation of the tangent line to the curve when x has the given value. - f(x) =x;x=25f ( x ) = \sqrt { x } ; x = 25


A) y=110x+4y = \frac { 1 } { 10 } x + 4
B) y=110x+52y = - \frac { 1 } { 10 } x + \frac { 5 } { 2 }
C) y=110x+52y = \frac { 1 } { 10 } x + \frac { 5 } { 2 }
D) y=110x52y = \frac { 1 } { 10 } x - \frac { 5 } { 2 }

E) B) and C)
F) A) and B)

Correct Answer

verifed

verified

Use NDER on a calculator to find the numerical derivative of the function at the specified point. - f(x) =4x2+7xf ( x ) = - 4 x ^ { 2 } + 7 x at x=5x = 5


A) 3
B) 33- 33
C) 13- 13
D) 33

E) A) and B)
F) A) and C)

Correct Answer

verifed

verified

Find the limit of the function algebraically. - limx3x22x15x+3\lim _ { x \rightarrow 3 } \frac { x ^ { 2 } - 2 x - 15 } { x + 3 }


A) Does not exist
B) 8- 8
C) 0
D) 5

E) B) and C)
F) None of the above

Correct Answer

verifed

verified

Showing 101 - 120 of 167

Related Exams

Show Answer